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Abstract
Provocative emerging evidence suggests that the N-methyl-D-aspartate
(NMDA) receptor can signal in the absence of ion flux through the receptor.
This non-ionotropic signaling is thought to be due to agonist-induced
conformational changes in the receptor, independently of channel opening.
Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to
induce synaptic long-term depression (LTD), directly challenging the
decades-old model that prolonged low-level calcium influx is required to induce
LTD. Here, we briefly review these recent findings, focusing primarily on the
potential role of non-ionotropic signaling in NMDA receptor-mediated LTD.
Further reports concerning additional roles of non-ionotropic NMDA receptor
signaling are also discussed. If validated, this new view of NMDA
receptor-mediated signaling will usher in an exciting new era of exploring
synapse function and dysfunction.
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Introduction
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated 
cation channels that play crucial roles in neurodevelopment and 
bidirectional synaptic plasticity. Most of the functions of the 
NMDAR have been attributed to the influx of calcium ions during 
channel opening1–10. However, a flurry of recent studies11–18 have 
provided more systematic support for earlier studies19–22 suggest-
ing that agonist binding to NMDARs can transmit information 
to signaling molecules independently of Ca2+ influx through the 
channel. If confirmed, these findings may lead to new pharmaco-
logical approaches to target specific synaptic signaling cascades 
in the numerous disorders attributed to synaptic dysfunction,  
including autism, schizophrenia, post-traumatic stress disorder,  
epilepsy, addiction, and Alzheimer’s disease.

Synaptic plasticity is a well-established cellular model for learning  
and memory and involves the persistent increase (long-term poten-
tiation, or LTP) and weakening (long-term depression, or LTD) of 
synaptic strength in response to various patterns of activity. At most 
excitatory synapses in the brain, NMDAR activation is important 
for the induction of both LTP and LTD23–26. The widely accepted 
model for how activation of a single receptor can produce oppo-
site changes in synaptic strength involves the amount and dura-
tion of Ca2+ influx27–30. This model posits that brief periods of 
high-frequency synaptic activity lead to a large, rapid increase in 
intracellular Ca2+ through the NMDAR that activates a series of 
biochemical steps, leading to LTP31. Conversely, prolonged periods 
of low-frequency synaptic activity drive a modest increase in Ca2+ 
through NMDARs that activates a different series of biochemical 
steps, leading to LTD24,25,32.

For NMDAR-dependent LTD, the model that a modest increase  
in intracellular Ca2+ is necessary for LTD induction has recently 
been challenged. Using systematic pharmacological approaches 
that block ion flux but spare glutamate binding to the NMDAR, 
Nabavi et al.15 found that LTD could still be induced in an 
NMDAR-dependent manner. Here, we will review this provocative 
finding and follow-up studies, highlighting a direct refutation33 and 
confirmation16 of this result. Furthermore, we will discuss possi-
ble explanations for the disparate findings and additional reports 
of NMDAR-mediated signaling independent of channel opening. 
Given the importance of NMDARs in synaptic development and 
plasticity, these findings have the potential to be transformative but 
need further detailed and rigorous follow-up.

Does NMDAR-dependent LTD involve non-ionotropic 
mechanisms?
NMDARs have a rich and complex pharmacology. Most NMDARs 
are heterotetramers containing two GluN1 subunits and two GluN2 
subunits. One of the notable properties of NMDARs is that they 
are blocked by magnesium ions at resting membrane potentials35; 
opening of NMDARs requires simultaneous activation by glutamate 
and depolarization to relieve the Mg2+ block. In addition, NMDARs 
are unique among neurotransmitter receptors in having an absolute 
requirement for the binding of a co-agonist in addition to glutamate  
in order to open the channel. Glutamate binds to the extracellular 
ligand-binding domain on the GluN2 subunits, whereas the 
co-agonist, which is either glycine or d-serine, binds to the 
homologous ligand-binding domain on the GluN1 subunits (Figure 1).

There are multiple approaches to blocking ion flow through the 
NMDAR: (1) a competitive antagonist of the glutamate-binding 
site on GluN2 (e.g. AP-5), (2) a competitive antagonist of the 
co-agonist site on GluN1 (e.g. 7-chlorokynurenate, or 7-CK), or 
(3) an uncompetitive blocker of the channel pore (e.g. MK-801) 
(Figure 1). Using each of these pharmacologic strategies to 
block ion flow through the NMDAR, Nabavi et al.15 surprisingly 
found that only the glutamate site antagonist AP-5 blocked LTD, 
suggesting that glutamate binding is required for LTD but not 
co-agonist binding or ion flow through the NMDAR. Although 
metabotropic glutamate receptor (mGluR)-mediated forms of LTD 
can also occur at these synapses36–38, application of an mGluR5 
inhibitor and an inhibitor of L-type Ca2+ channels (which are 
required for mGluR1-mediated LTD39) did not block the LTD 
observed in the presence of 7-CK or MK-801, supporting the  
notion that signaling through mGluRs did not provide an  
alternate source for a rise in intracellular Ca2+ leading to LTD.

So, what about the two decades of evidence that support a funda-
mental role for NMDAR-mediated Ca2+ influx in LTD32? Indeed, 
introducing Ca2+ chelators intracellularly to the post-synaptic 
neuron prevents LTD24,40–43. In addition, increases in intracel-
lular Ca2+ levels through activation of voltage-gated calcium 

Figure 1. Pharmacology of the N-methyl-d-aspartate receptor 
(NMDAR). Most NMDARs are tetrameric proteins containing two 
GluN1 and two GluN2 subunits (for clarity, only one of each is 
pictured). For the NMDAR channel to open, both glutamate and 
a co-agonist, which can be glycine or d-serine, need to bind to 
clamshell-like ligand-binding domains on the GluN2 and GluN1 
subunits, respectively. There are multiple approaches to block 
ion flow through the NMDAR channel: a competitive antagonist 
for the glutamate-binding site on the GluN2 subunits (e.g. AP-5), 
a competitive antagonist for the glycine/d-serine binding site on 
the GluN1 subunits (e.g. 7-CK), or an uncompetitive blocker of the 
channel itself (e.g. MK-801). 7-CK, 7-chlorokynurenic acid; AP-5, 
(2R)-amino-5-phosphonovaleric acid; MK-801, dizocilpine.
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channels44 or photolysis of caged Ca2+30,45 induces synaptic depres-
sion that occludes additional LTD. Furthermore, LTD requires 
signaling mechanisms which are dependent on Ca2+, including the 
activation of calcineurin46 and hippocalcin47. Nabavi et al.15 also 
saw that Ca2+ chelation inhibited LTD, but they proposed that 
the reduction in basal intracellular Ca2+ concentration by strong 
chelation is responsible for the loss of LTD. To test this idea, they 
buffered the intracellular Ca2+ concentration with the strong chela-
tor BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic 
acid) along with additional free Ca2+ in order to prevent acute rises 
in Ca2+ while maintaining baseline Ca2+ near physiological levels. 
This clamping of Ca2+ at baseline levels did not block LTD, sug-
gesting that low levels of basal Ca2+, but not acute elevations of Ca2+ 
through the NMDAR, are required for LTD. Remarkably, when Ca2+ 
influx was blocked through the NMDAR with MK-801, a high- 
frequency stimulus that normally induces LTP actually 
resulted in LTD. Together, these results support that NMDAR- 
dependent LTD requires glutamate binding to the NMDAR but  
not Ca2+ influx.

The surprising and provocative work by Nabavi et al.15 was soon 
directly challenged. Specifically, Babiec et al.33 found that, in 
contrast to Nabavi et al., MK-801 effectively blocked LTD induc-
tion in slices from both young and adult animals. Furthermore, they 
showed that MK-801 blocked a chemical form of LTD induced 
by bath application of the glutamate site agonist NMDA. In addi-
tion, lowering extracellular Ca2+ concentration also blocked LTD, 
supporting previous studies defining the role of Ca2+ in LTD32. 
These results stand in direct conflict with those of Nabavi et al., 
and the reasons for these inconsistent findings remain unclear (see 
below for additional discussion).

Others have begun to weigh in. Recently, Stein et al.16 examined 
the role of non-ionotropic NMDAR signaling in activity-induced 
dendritic spine shrinkage, a structural correlate of LTD. Using 
two-photon glutamate uncaging and time-lapse imaging, they 
found that low-frequency uncaging led to spine shrinkage even 
when the NMDAR glycine/d-serine site was blocked with 7-CK. 
Furthermore, the presence of 7-CK or MK-801 converted high- 
frequency uncaging-induced spine enlargement to spine shrinkage, 
similar to the findings by Nabavi et al. for LTD. This spine shrinkage 
evoked in the presence of 7-CK was not inhibited by co-application 
of antagonists of mGluR1 and mGluR5. Importantly, since two- 
photon glutamate uncaging was used to bypass presynaptic neu-
rotransmitter release, the potential effects of the pharmacological 
agents on pre-synaptic NMDARs were avoided. These results 
further support the idea that non-ionotropic NMDAR-mediated 
signaling mechanisms can drive synaptic depression.

Why the inconsistent results among laboratories48? It is not 
yet clear. One possibility is that ionotropic and non-ionotropic 
mechanisms coexist. Alternatively, there may be unrecognized 
experimental differences (for example, in slice preparation, solu-
tions, timing of drug application and removal, perfusion, and 
temperature). Indeed, a major limitation of these studies is the reli-
ance on pharmacology. In most previous studies, AP-5 or other 
competitive glutamate site antagonists are used to block NMDAR 
activity, and we are unaware of any published examples in which 
AP-5 did not block NMDAR-mediated LTD. The examination of 

glycine co-agonist site antagonists in LTD, however, is a newer 
development, and it would have been enlightening if Babiec et al. 
had included one in their analysis. 7-CK is an early derivative of 
the naturally occurring kynurenic acid, which is a non-selective 
antagonist of all ionotropic glutamate receptors as well as the 
α7-nicotinic receptor. Although 7-CK is more potent and selective 
than kynurenic acid, it still exhibits a significant blockade of other 
receptors49. Follow-up studies using higher-potency glycine site 
antagonists, and ones of different chemical classes, such as MDL 
105,51950, will be of key importance.

Most of the conflicting results described above involve MK-801, 
an uncompetitive open-channel blocker of NMDARs51. Oddly 
enough, it appears that this controversy is not new. Previous 
studies have shown an inhibition of LTD by MK-801 in the CA1 
region of the hippocampus52,53 and the mouse visual cortex54. 
However, an older report showed that although MK-801 blocked 
LTP, it did not block low-frequency stimulation-induced LTD in the 
hippocampus19. Perhaps others have observed a lack of LTD inhi-
bition by MK-801 but attributed this to experimental error or 
incomplete NMDAR blockade and therefore never reported it. 
Indeed, because of the use-dependent nature of MK-801, incom-
plete blockade of synaptic NMDARs may allow small local 
increases in Ca2+ during repetitive stimulation right at the channel 
mouth that is not effectively buffered. Although this explanation 
is unlikely, it is difficult to rule out. Indeed, in an attempt to con-
trol for this use dependence of MK-801, slices are often incubated 
for a few hours in order to allow spontaneous activity to block all 
NMDARs prior to the onset of stimulation15,33, although others find 
that LTD is blocked when MK-801 is applied just minutes before 
induction55–57. Another issue is that the current tools for measuring 
changes in intracellular Ca2+ are not sensitive enough to detect trace 
amounts of influx through the NMDAR, especially if that Ca2+ is 
immediately bound to proteins within the NMDAR signaling com-
plex. This could possibly be examined with a Ca2+-impermeable or 
channel “dead” NMDAR or by attaching a genetically encoded 
Ca2+ sensor directly to the NMDAR intracellular domains or 
associated proteins.

Agonist-induced conformational changes in the 
NMDAR intracellular domains
Of course, the possibility of non-ionotropic signaling by NMDARs 
requires evidence of conformational changes upon agonist bind-
ing. While perhaps surprising for ligand-gated ion channels, 
non-ionotropic signaling is extremely common. G-protein-coupled 
receptors (GPCRs) comprise the largest protein superfamily in 
mammalian genomes and act solely through conformational changes 
upon extracellular agonist binding58,59. Indeed, the β2-adrenergic 
receptor, a prototypical GPCR, has only 168 intracellularly located 
amino acids, whereas NMDARs with their tetrameric structure and 
long complex C-terminal tails can have upwards of 1700 intracellu-
lar residues. In addition, at the post-synaptic density, NMDARs are 
a central member of a large macromolecular complex comprising  
signaling molecules, scaffolding and adaptor proteins, and 
cytoskeletal proteins60,61. Through these complex interactions, 
NMDARs are in a key position to engage and regulate intracellu-
lar signaling machinery. Indeed, while the long C-terminal tails of 
NMDARs have been presumed to be intrinsically unstructured, the 
complex scaffolding and interactions at the post-synaptic density 
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may impart the secondary and tertiary structure62 required to trans-
mit information via agonist-induced conformational changes63.

Recently, Dore et al.13 demonstrated that NMDA binding to the 
glutamate site of the GluN2 subunits drives conformational changes 
in the NMDAR intracellular domains. Specifically, either green 
fluorescent protein (GFP) or mCherry was fused to the C-terminal 
tails of GluN1 subunits, and primary hippocampal neurons were 
co-transfected with both GFP- and mCherry-containing GluN1 
subunits. Importantly, although the GluN2 subunits contain the 
glutamate-binding domain, GluN1 was chosen because tagging 
GluN2 subunits affects their trafficking and synaptic targeting64. 
They then used fluorescence lifetime imaging microscopy (FLIM) 
to measure the lifetime of GFP fluorescence, which is reduced when in 
close proximity to mCherry because of Förster resonance energy 
transfer (FRET)65. They found that NMDA caused rapid changes in 
GFP fluorescence lifetime in the presence of 7-CK or MK-801, but 
not in the presence of AP-5, providing evidence for agonist-induced, 
but ion flow-independent, conformational changes in the NMDAR 
C-terminal tails. In an accompanying study using similar tech-
niques, Aow et al.11 showed that NMDA binding, even in the 
presence of 7-CK (but not AP-5), leads to changes in the interac-
tions between GluN1-GFP and various signaling proteins known 
to associate with the NMDAR which were tagged with the FRET 
acceptor mCherry. Specifically, they measured a rapid transient 
change in the interaction between GluN1 and protein phosphatase 
1 (PP1) and a delayed but persistent change in the interaction of 
GluN1 with calcium/calmodulin-dependent protein kinase II 
(CaMKII). Together, these findings provide support that agonist 
binding to the NMDAR can produce intracellular conformational 
changes independently of ion flow through the receptor channel. 
These conformational changes are consistent with non-ionotropic 
signaling following glutamate binding to NMDARs.

Other non-ionotropic NMDAR signaling
In addition to LTD, other studies have suggested additional roles 
for non-ionotropic NMDAR signaling. In Alzheimer’s disease, 
for example, impaired hippocampal synapse dysfunction is an 
early event66,67 that is associated with increased levels of diffusible 
oligomeric assemblies of the amyloid-beta (Aβ) protein68–70. These 
Aβ oligomers cause a rapid synaptic depression that is dependent 
on NMDAR activity71–75. Recently, it has been shown that this 
NMDAR-dependent, Aβ-induced synaptic depression does not 
require ion flux though the channel12,14,17. Kessels et al.14 found 
that increasing Aβ levels in organotypic hippocampal slice cultures 
through the viral expression of the β-secretase product of the 
amyloid precursor protein leads to a baseline synaptic depression 
that can be blocked by AP-5, but not 7-CK or MK-801. Similarly, 
Tamburri et al.17 found that this synaptic depression can occur 
in acute hippocampal slices within 15 minutes of perfusion of 
oligomeric Aβ and that this rapid depression was dependent on 
NMDAR activity and was blocked by AP-5, but not MK-801, again 
suggesting that it did not require ion flux through the receptor17. In 
addition to Aβ-induced synaptic depression, Aβ oligomer-induced 
synapse loss was recently demonstrated to be blocked by AP-5, 
but not MK-80112. Together, these results suggest that non- 
ionotropic NMDAR signaling contributes to the Aβ-induced 
synaptic dysfunction in Alzheimer’s disease and may suggest a 
common mechanism between Aβ-induced synaptic depression and 
non-ionotropic NMDAR-dependent LTD.

Other studies have described non-ionotropic NMDAR signaling, 
providing additional support for its physiological importance. 
In the earliest of these studies, glutamate binding was shown 
to induce dephosphorylation of the GluN2A subunit, resulting 
in the endocytosis of the receptor in the absence of ion flux21. In 
another, co-activation of NMDARs and mGluR5 led to extracellular 
signal-regulated kinase (ERK) activation and increased c-Fos  
expression independent of ion flux but dependent on the  
interaction of the GluN2 C-terminal tail with scaffolding pro-
teins in the post-synaptic density22. NMDAR activation is also 
central to pathological processes that lead to neuronal death and 
non-ionotropic NMDAR-mediated signaling through Src kinase, and 
pannexin-1 was recently reported to occur during excitotoxicity18. 
In addition to glutamate, co-agonist binding to the glycine site 
on the GluN1 subunits may also be involved in non-ionotropic 
signaling. For example, glycine or d-serine binding has been 
found to prime the NMDAR for subsequent clathrin-mediated endo-
cytosis in the presence of AP-5 but not glycine site antagonists20.

A new horizon for NMDAR biology?
Here we have reviewed the current literature suggesting that activa-
tion of NMDARs can activate intracellular signaling independent 
of ion flux through the receptor. These results have been quite 
provocative, though from our perspective not entirely unexpected 
as NMDAR are part of a large multi-protein complex at the 
post-synaptic density and thus are in an ideal position to have 
conformation-based signaling. Although the physiological signifi-
cance of potential parallel ionotropic and non-ionotropic NMDAR 
signaling processes remains controversial, their coexistence 
predicts the possibility for divergent signaling events based on 
agonist and co-agonist availability, channel opening, and receptor 
subunit composition. Ultimately, further exploration of this model 
may open a new frontier of NMDAR biology and lead to the devel-
opment of novel approaches for targeting NMDAR signaling for the 
treatment of multiple neuropsychiatric disorders.
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