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1 INTRODUCTION

One of the most striking features of the brain is its ability to produce adaptive behaviors
on the basis of individual experience. From development of human language to problem
solving by cephalopods, the diversity of sensory, motor, and cognitive skills displayed
across the animal kingdom is staggering. Although task-related specializations are evident
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across species and at all levels of the nervous system, the seeming ease by which animals
learn new tasks and acquire lasting memories raises the question of what, if any, common
principles are at work.

The foundation for answering this question was laid in the 20th century with three fun-
damental advances: establishment of the neuron doctrine,1 demonstration of chemical syn-
aptic transmission,2�6 and elucidation of the ionic basis of the action potential.7�11

Increasingly precise tools for delving into the structure and function of synapses, and into
the electrical signaling properties of neurons, have provided proof that the brain is a net-
work. Contemporary with this insight was development of artificial neural networks,
beginning a history of cross-pollination between the fields of neuroscience and computer
science.

Information processing and storage within any network, biological or artificial, can be
achieved by modifications in three parameters:

• The weights of each connection.
• The pattern of connections between nodes.
• The rules of integration that occurs at each node.

Interestingly, the dominant theory for learning in neuronal circuits from the 1950s to
around 2000 focused mainly on the first parameter: weight changes induced at synapses
according to their history of electrical activity. Perhaps, that narrow focus resulted either
from the compelling logic (and truth) of Hebb’s postulate of temporal precedence,12 now
fully described by rules of spike timing-dependent plasticity,13�16 or from the discovery of
long-term potentiation17 (LTP) and long-term depression18 in the 1970s�80s, which pro-
vided a path toward unraveling the molecular mechanisms of learning and memory19�21

and the associated hope of clinical applications.
More recent theoretical and experimental results, however, have demonstrated the cru-

cial role of changes in two other parameters: the pattern of connections (rewiring) and the
rules of integration performed by each neuron or dendritic branch. This chapter focuses
on developments of approximately the past 15 years beginning with discovery of micro-
structural dynamics in the living brain. We consider how, in principle, these changes
might be harnessed to fine-tune information processing and storage and critically review
empirical tests of the input clustering model22�25 developed by Poirazi and Mel (Fig. 14.1).
We identify gaps in current understanding and use potential experiments to fill those
gaps. Finally, we speculate on the implications of this emerging understanding for neuror-
ealistic simulation and neuromorphic computing.

2 MICROSTRUCTURAL PLASTICITY: SPINE DYNAMICS AND
THE MAKING AND BREAKING OF SYNAPTIC CONNECTIONS

Macroanatomical changes in brain structure have long been known to occur during
development and in postdevelopmental circuits following injury, neurodegeneration, or
neurogenesis. In contrast, the notion that ongoing changes at the microscale level might
provide a substrate for learning and memory was still not widely accepted in 1982 with
the publication of Francis Crick’s commentary “Do dendritic spines twitch?”26 The
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postulate was that cytoskeletal-driven changes in the morphology of dendritic spines
would alter their electrical properties, thereby effecting synapse-specific weight change
that encoded memories. Indeed this “twitching” would be experimentally verified in vivo
two decades later (discussed in the following paragraph) and the proposed actin-based
mechanism confirmed.27�29 Therefore, compelling was the notion at the time that synaptic
wiring was static, even Crick’s prescient article did not include speculation that spine
twitching might also lead to the formation of new synaptic connections.

The first observations of chronic dendritic spine dynamics in the living brain were
reported in 2002 by two research groups using two-photon microscopy to acquire days to
weeks of time-lapse images of dendrites of fluorescently labeled neurons in rodent cor-
tex.30,31 They found that dendritic spines could completely extend or retract in the adult
rodent brain. The structure of dendritic arbors, however, was remarkably stable. In most
cases the upper range of spine extension was B2 μm. The groups disagreed on the preva-
lence and frequency of spine dynamics, but subsequent work by many others has con-
firmed the basic observation that spines are extending and retracting in the living
brain,32�35 charted the behavioral and sensory paradigms that affect motility,34,36�44

Training of
Cohort A 

Stimulation
of Cohort A 

Stimulation
of Cohort B 

Stimulation
of Cohort A 

Stimulation
of Cohort B 

Before learning After learning

FIGURE 14.1 The input clustering hypothesis. Two cohorts of afferent input are depicted in red and blue.
Activity evoked in each cohort is asynchronous with the other. Before learning, synapses are distributed ran-
domly across the dendritic field of the postsynaptic neuron (gray). Activation of either cohort evokes a similar
response from the soma. During a training period in which cohort A is repeatedly activated, synapses are made
with all axons in the local neighborhood. Synapses from cohort A are selectively preserved only if they are
located near one another on the same branch of dendrite—an input cluster. Activation of the cluster drives supra-
linear summation and enhances the response from the soma. That occurs even with the same total number and
strengths of synapses present before training. The storage capacity of circuits is predicted to be greater when
input clustering is employed than when plasticity is limited to changes in synaptic weight.
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determined the relationship between spine growth and retraction and the formation and
elimination of synapses,36,45�50,51 begun to define the cell types,36,37,52,53 the cellular, and
molecular mechanisms,54�59 and, in a recent tour de force, demonstrated that spine growth
is necessary for learning.60 As this topic receives detailed treatment in a separate chapter,
we summarize the relevant findings here:

• Dendritic and axonal branching patterns in postdevelopmental circuits are stable,
absent injury, neurogenesis, or neurodegeneration.30

• Spine motility occurs throughout life.32,33,61 Presynaptically, bouton turnover and
microstructural extensions of axonal branchlets and terminal boutons have also been
observed.62�65

• Spine motility is most prevalent in juveniles and declines in adults where most
connections are stable over weeks to months, although a few (B5%) continue to be
dynamic.32,33

• In both juveniles and adults, newly sprouted spines that eventually stabilize are
associated with newly formed synapses.36,46 Retraction of previously stable spines is
associated with synapse elimination.30,50,51

• In conclusion, spine motility provides a substrate for sampling the local neighborhood
for new synaptic partners. Because the dendritic and axonal branches are stable, the
spatial range of remodeling is limited to approximately one spine’s reach.

3 WHAT IS WITHIN A SPINE’S REACH?

Neuropil is a densely packed forest of cellular processes and extracellular matrix. What
could a single spine’s extension within this milieu realistically hope to achieve?

This question was first addressed using geometric modeling and bulk neuropil statis-
tics.66,67 Informed by the vital imaging studies described above, a cylindrical zone extend-
ing one spine’s reach from the surface of each dendrite was identified as the spatial realm
of remodeling. The number of actual synapses made onto the dendrite was calculated, and
the number of potential synapses estimated from total length of axons positioned within
the zone. Filling fraction—the ratio of actual to potential synapses—was calculated from
anatomical measurements made independently in seven local circuits populating mouse
neocortex, macaque neocortex, and rat hippocampus: pyramidal neuron density (range
2�223 104 mm23), dendritic length/neuron (1.4�12.3 mm), interbouton interval
(3.7�6.2 μm), and average spine length (1.8�2.6 μm). The calculated filling fractions ran-
ged from 0.12 to 0.34. Thus, the majority of potential synaptic partners coursing through
the remodeling zone were unconnected with the target dendrite.

These low filling fractions imply a high capacity for information storage. Indeed, the
storage capacity per synapse was predicted to be 3�4 bits, exceeding the naive value of
1 bit because of the latent potential connections. Thus, one answer to the question of what
is within a spine’s reach is a large number of unconnected axons providing opportunity
for a very large number of distinct wiring diagrams.

A related model explored whether radially random axonal outgrowth could generate
the observed filling fractions.68 In this simulation, as neuronal density increased from a
few neurons to thousands (an anatomically realistic number), the filling fraction fell from

298 14. WITHIN A SPINE’S REACH

IV. STRUCTURAL PLASTICITY AND LEARNING AND MEMORY



1 and stabilized at B0.26, in the center of the range calculated by the previous study. In
addition, the incidence of unconnected neighboring neurons increased, consistent with
experimental data. These modeling results demonstrate that a simple geometric rule for
outgrowth, in combination with Hebbian-type synaptic competition, can explain key fea-
tures of cortical connectivity.

Both modeling studies highlight the need for more precise connectivity measurements.
With the advent of tools for structural and functional connectome reconstruction, the
desired data are beginning to emerge. One project employed multiscale imaging to ana-
lyze a 0.13 mm3 volume of somatosensory cortex from a young adult mouse.69 An
803 103 μm3 subvolume was imaged at 3 nm per pixel resolution using scanning electron
microscopy (EM), and within it, all neuropil elements (axons, dendrites, spines, and syn-
apses) were reconstructed. This smaller “saturated” volume contained two apical den-
drites of pyramidal cells and all of their synaptic inputs. This is the type of primary data
needed to definitely address questions of connectivity at the microscale. The first applica-
tion was to test Peters’ rule.

Peters’ rule, as formalized by Valentino Braitenberg,70 postulates that the number of syn-
aptic connections between two neurons can be predicted from geometric overlap of their
axonal and dendritic arbors.71 In this model, axodendritic “touches” are assigned as synap-
ses and the entire population winnowed to match actual bulk synapse density. To test
Peters’ rule using the saturated volume of neocortex, a geometric bootstrap analysis was
performed on all 1037 synapses, 916 axons, 1036 dendritic spines, and 7505 spine touches.
Redundant synapses were identified when a single axon made more than one synapse
with the target dendrite. In the simulation, redundant synapses were calculated from axos-
pinous touches in each of 80,000 randomization trials of axonal positions. The median num-
ber of redundant synapses in these trials, 52, was far lower than the actual number, 78,
(P,0.00001), indicating that axodendritic overlap is not sufficient to explain connectivity in
adult somatosensory cortex.69 The conclusion was that some factor—a molecular tag or
activity-based signal—endowed certain axons with privileged access to the dendrite.

These results, and more recent ones employing unbiased large-scale methods to
uncover connectivity principles between finely parsed cell type populations in adult neo-
cortex,72 lend support to the notion that microscale connectivity is nonrandom. Still, the
focus of many studies so far has been to map connectivity by quantifying the strength of
the bulk connection (including redundant synapses) between two identified neurons. This
can be measured functionally using paired recordings or estimated from light or EM
images by summing the number of synapses made between neurons A and B after differ-
entially weighting individual synapses on the basis of proxy measures such as volume,
number of synaptic vesicles, or protein content. These methods of quantifying bulk con-
nection strength provide valuable information yet do not account for one potentially cru-
cial aspect of postsynaptic integration, which is not just the number and strength of
individual synapses but their dendritic address.

4 DISTRIBUTED VERSUS CLUSTERED INPUTS

Neurons can integrate up to 10,000 synaptic inputs arising from hundreds of input
sources. Dendritic fields performing this operation exhibit diverse morphologies speckled
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with passive and active properties that shape the integration. To identify the summation
rules for excitatory synapses, theoretical studies24,73�77 have used compartmental models
of anatomically and biophysically realistic neurons, and experimental studies78�85 have
employed in vitro slice preparation, whole-cell recording, and stimulation of multiple
input locations using glutamate iontophoresis or uncaging. A few common principles
have emerged.1 For excitatory postsynaptic potentials (EPSPs) delivered simultaneously to
a: (1) small number of different shaft locations on the same branch, summation is sublinear
due to local reductions in driving force; (2) small number of spine synapses on the same
dendrite, summation is linear, as the high neck resistance restores linearity by electrically
isolating each spine head from local reductions in driving force; (3) larger number of spine
synapses clustered on a subregion of dendrite, summation is supralinear because the
summed EPSP crosses a local threshold for activation of voltage-dependent channels
(sodium channels, calcium channels, or NMDA receptors). Whether this supralinearity
results in a dendritic spike,86�88 the activation of clustered inputs results in strong depo-
larization at the soma.

How these summation rules interact with weight and wiring changes is the key distinc-
tion between two competing cellular models for information processing and storage: dis-
tributed versus clustered inputs. The distributed model proposes that excitatory spine
synapses originating at different afferent sources are distributed randomly along the den-
dritic tree.2 Narrow spine necks isolate each spine from dendritic depolarizations, active
conductances serve to amplify more distal EPSPs, and, as a result, summation is linear
with each synapse contributing to the neuronal computation according to its weight, not
location.90 The output of this global integration would be influenced by adaptable weight
changes and plasticity of intrinsic properties but not by readdressing of inputs already
present. The computational power of the network would arise both from these cellular
properties and emergent features of distributed processing at higher levels.

In contrast, the clustered model proposes that synaptic inputs bringing synergistic affer-
ent information—for example, independent sensory features needed to construct the post-
synaptic neurons’ receptive field—would be most effectively positioned as dendritic
neighbors. This would increase their chance of crossing the local threshold for amplifica-
tion and thus increase the capacity of the neuron for pattern detection. Indeed, any
position-dependent nonlinearity is predicted to add to the repertoire of neuronal computa-
tions.91 In summary, dendritic readdressing even of preexisting inputs, in combination

1Cell-type specific variations in dendritic processing can be striking. For example, the dendrites of

cerebellar interneurons typically operate in sublinear mode.89 The discussion below refers primarily,

although not exclusively, to pyramidal neurons from the mammalian neocortex or hippocampus and

emergent common principles. Cell-type specific exceptions, when relevant, are noted.
2The question of dendritic addressing of different afferent sources refers to sources carrying the same type

of input, i.e., excitatory glutamatergic synapses encoding the value of a graded variable such as location

of a sensory stimulus. The dendritic addressing of these inputs is believed to be sculpted by stochastic

mechanisms and activity-dependent feedback. In contrast, dendritic addressing of afferent sources

carrying different types of input (neurochemical or source) is in many cases directed by genomic

programs. This chapter focuses on the former, not the latter.
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with adaptable weight changes and plasticity of intrinsic properties, is predicted to
enhance the computational power of the network.

This input clustering hypothesis predicts (1) that clusters of coactive synapses exist and
that the number, strength, and spacing of these dendritic input clusters is appropriate to
drive supralinear summation on dendrites in response to natural stimuli and (2) that
experience-dependent remodeling will drive formation of dendritic input clusters from an
initially global distribution (Fig. 14.1).

Regarding the first prediction, cluster composition is expected to depend on synaptic
weights and kinetics, dendritic dimensions, and membrane properties and thus will vary
from cell to cell, dendrite to dendrite, and across a cell’s lifetime as synaptic and intrinsic
properties are modified. Using biophysically realistic models of pyramidal and hippocam-
pal neurons, Poirazi and Mel’s model predicted supralinear interactions resulting from as
few as two moderately strong spine synapses located ,40 μm apart on a dendrite.
Physiological studies informed by these predictions, across a wider range of cell types and
conditions, have found supralinear summation resulting from coactivation of 7�1082 or
B2083 nearby synapses or as few as two stronger ones.80 In accordance with model predic-
tions, experimental results confirm that fewer/weaker input patterns result in linear sum-
mation.78,80,81 Thus, functional clusters occupy a niche within the larger parameter space
of spatiotemporal input patterns.

There have been more than 20 tests of the two predictions of the input clustering
hypothesis since 2008. These studies were performed in a wide array of species, analyzed
diverse circuits, and used different tools for functional (calcium imaging, electrophysiol-
ogy) or anatomical (confocal and two-photon imaging, EM, array tomography) mapping.
In some cases they reached opposing conclusions. We highlight many of the significant
findings in the subsequent sections.

5 EXPERIMENTALTESTS OF THE PREDICTIONS
OF THE INPUT CLUSTERING HYPOTHESIS

5.1 Do Dendritic Input Clusters Exist?

Within a few years of publication of Poirazi and Mel’s modeling predictions, several
independent studies established that coactivation of clustered inputs on dendrites can
drive supralinear summation80,82,83; however, determining whether clustered dendritic
inputs are naturally coactive and whether they do drive supralinear summation required
experiments that utilized natural activity patterns, such as spontaneous or sensory-evoked
activity. Such studies began to appear in 2010�12.92�96

Initial support for the existence of naturally coactive input clusters came from
Kleindienst et al. (2011) and Takahashi et al. (2012). Using calcium imaging to monitor
spontaneous calcium transients in CA3 pyramidal neurons in organotypic hippocampal
slice cultures, both studies found that calcium transients arising from neighboring loca-
tions on the dendrite were more likely to be coincident than those arising from distant
locations; these local clusters of coactive inputs spanned 16 μm in early postnatal slices95

and 8 μm in older slices that had been an additional few weeks in culture.96 Comparable

3015 EXPERIMENTAL TESTS OF THE PREDICTIONS OF THE INPUT CLUSTERING HYPOTHESIS

IV. STRUCTURAL PLASTICITY AND LEARNING AND MEMORY



results were obtained from dendrites of spontaneously active L2/3 pyramidal neurons
in vivo in the somatosensory cortex of young adult mice, where local clusters of coactive
spines were observed within a 6 μm span of dendrite.96

In contrast, Konnerth and colleagues reported no evidence for clustering of coactive
inputs on dendrites of L2/3 pyramidal neurons in vivo in the sensory cortices of young
adult mice in response to sensory stimulation.92�94 Notably, these pioneering studies
provided the first observations of sensory-evoked single-spine activity in mammalian
cortical neurons in vivo. Using two-photon imaging to monitor dendritic calcium transi-
ents in L2/3 neurons of the mouse visual cortex,92 auditory cortex,94 or somatosensory
cortex,93 the authors observed that calcium transients evoked by closely related sensory
stimuli appeared widely distributed on the dendritic tree, and that adjacent inputs
often represented signals of broadly different sensory feature values. The authors con-
cluded that the results of their studies are most consistent with the global integration
model in which neurons compute their output by integrating spatially distributed
synaptic inputs.

While the data from Konnerth and colleagues did not provide support for the preferen-
tial activation of clustered inputs, they did not rule out that certain aspects of receptive
field arise due to dendritic input clusters. Indeed, a recent study examining a broader
array of stimulus characteristics demonstrated just that. Wilson et al. used in vivo two-
photon calcium imaging of individual spines on dendrites of L2/3 cells to examine orien-
tation preference and orientation selectivity in the visual cortex of young adult mice.97

They showed that while reliable in predicting orientation preference, summed synaptic
input to individual neurons did not predict orientation selectivity. Instead, orientation
selectivity strongly correlated with the spatial clustering of cotuned synaptic inputs.
Furthermore, those dendritic branches with more cotuned clusters showed a greater rate
of local dendritic calcium events, suggesting that functional clustering of synaptic inputs
plays an important role in the dendritic nonlinearities that shape orientation selectivity.97

Two recent functional studies provide further support for the existence of dendritic
input clusters in vivo. Winnubst et al. quantified spontaneous calcium transients in vivo in
L2/3 cells of the visual cortex of young postnatal mice, demonstrating that, even at these
early ages, nearby synapses (,12 μm) were more coactive than synapses far apart.98 Gokce
et al. combined optogenetics and two-photon calcium imaging to map the spatial organiza-
tion of glutamatergic synapses between L5 pyramidal neurons in mouse neocortical slices,
finding that synapses of intralaminar inputs form clusters (4�14 synapses) spanning
30 μm on the basal dendrites of L5 pyramidal neurons.99

Anatomical studies have provided complementary data. No evidence for clustering was
reported in experiments using correlative light and EM to study focally labeled thalamo-
cortical synapses onto L4 cells.100 Because of the topographic organization of the visual
system, focal labeling should target neurons, and thus axons, that are likely to be coactive.
Yet evidence for clustering of labeled inputs onto dendrites was not observed for LM-
identified contacts nor for EM-identified synapses.100 In contrast, a recent study examining
thalamocortical synapses onto excitatory L4 neurons showed a significant clustering of
inputs onto barrel star pyramid neurons and a trend toward input clustering onto a septal
star pyramid neuron but no evidence for clustering on barrel spiny stellate neurons.101

The authors argue that this clustering could help explain the surprisingly potent ability of
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the thalamus to drive cortical activity despite that corticocortical synapses outnumber tha-
lamocortical synapses in a range of 10 to 1.

High-throughput anatomical approaches provide further support for dendritic input
clusters. Rah and colleagues used array tomography to examine the spatial distribution of
thalamocortical synapses onto L5 neurons in the mouse somatosensory cortex,102 finding
within-branch clustering (5�15 μm) more often than predicted from a random distribution.
In another study, Druckmann and colleagues used mGRASP to visualize inputs of presyn-
aptic CA3 neurons to postsynaptic CA1 neurons in the hippocampus.103 The authors ana-
lyzed within branch clustering and found significant deviation from random distribution
in 17 of 27 neurons: all exhibited an overabundance of the shorter distances, supporting
clusters. Furthermore, by labeling only neurons that were born in a similar time window,
input clustering (,1.5 μm) was significantly enhanced, suggesting that neurons born at
the same time could be functionally related and signaling together.

5.2 Does Experience-Dependent Remodeling Drive Formation
of Dendritic Input Clusters?

The second major prediction of the hypothesis is that learning should drive the redistri-
bution of synapses from a dispersed into a more clustered state.98,104 Indeed, experience-
driven changes in clustering have been observed using naturalistic learning paradigms in
owl and mouse, and in both juvenile and adult animals.

The first study to show clustering of inputs on dendrites following a learning paradigm
was McBride et al. using juvenile barn owls.105 When owls are reared wearing prism glasses
that shift the frontal visual field, new axonal growth in the projection from the central
nucleus of the inferior colliculus (ICC) to the external nucleus (ICX) serves to realign the
auditory and visual space maps and drive adaptive localization behavior. Notably, the func-
tionally dormant normal circuit is anatomically preserved alongside the active learned cir-
cuit,106 providing an internal control for cluster analysis. Because of the topographic nature
of the auditory projections, focal labeling of neurons in the ICC identifies coactive neurons
and thus coactive axonal inputs to the ICX. Measurements of the inter-contact distance
(ICD) of labeled axonal inputs to the nearest neighbors measured from the dormant normal
circuit in prism-adapted owls were on average ,10 μm; however, a significant fraction were
.20 μm. In comparison, ICDs .20 μm were almost never observed in the active learned cir-
cuit; nearly all inputs resided in clusters. When prisms were removed in adulthood,
increased clustering was observed in the now reactivated normal circuit.107 Interestingly,
even the synapses in functionally weak circuits in adult owls resided in clusters. This could
represent a trace of learning in the brain—an efficient way of storing a disused input pattern
that could be needed later in life. Altogether, these results demonstrate that behaviorally rel-
evant experience can drive the formation or disassembly of dendritic input clusters.

A subsequent study in young adult rodents by Makino and Malinow demonstrated
experience-dependent input clustering on dendrites of L2/3 cells in acute slices of somato-
sensory cortex of mice.108 Using an optical approach to track the delivery of fluorescently
tagged AMPA receptors into spines, the authors were able to monitor single-synapse plas-
ticity. Normal sensory experience preferentially produced synaptic potentiation onto
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nearby dendritic synapses (28/95 dendrites), consistent with the input clustering hypothe-
sis. In contrast, sensory deprivation via whisker trimming showed much less correlation
(5/68 dendrites) and instead led to a global homeostatic enhancement.

Further evidence supporting learning-induced input clustering on dendrites was first
reported in rodents by Fu and colleagues.41 Using two-photon imaging of GFP-labeled L5
pyramidal neurons in the motor cortex following training on a novel forelimb task, Fu
et al. showed that one-third of new spines appeared in clusters (adjacent to existing spines,
,5 μm), and that these were more resistant to elimination than nonclustered new spines.
Cross-training of the mice on a new task as adults resulted in the emergence of new clus-
ters that were largely separated from those associated with the first task. Notably, forma-
tion of new spine clusters required repetition of the same motor task; thus, the authors
show that clustering of new synapses along dendrites is induced by repetitive activation
of cortical circuitry during learning.41 Reiner and colleagues109 confirmed these studies in
wild-type animals and further showed that FMR1 knockout animals have deficits in
learning-induced spine clustering.

Finally, two behavioral studies utilized EM analyses to demonstrate learning-
induced synaptic clustering.110,111 In the first study, Lee et al. trained adult rats in a
motor skills task. EM analysis of parallel fiber to Purkinje cell synapses showed that
motor skill training promoted the formation of parallel fiber multiple synapse boutons
(MSBs) contacting two dendritic spines from the same dendrite of Purkinje cells in the
rat cerebellum.110 Notably, excitatory synapses near MSBs were smaller in motor-
trained animals, suggesting a compensatory depression of MSB-neighbor synapses.110 A
second study by Pereira and colleagues set out to define the effects of riluzole, a drug
that decreases glutamate release and facilitates astrocytic glutamate uptake, on age-
related cognitive decline. They measured both synaptic structure (EM) and memory
performance and showed that riluzole-treated rats were protected against age-related
cognitive decline and they exhibited a correlated increase in the density and clustering
of thin spines.111

In summary:

• A diverse array of species (owl,105,107 rat,95,96,108,110�112 mouse,41,92�94,98,99,102,103 cat,100

ferret97) and circuits (inferior colliculus,105,107 hippocampus,95,96,103,111,112 primary
sensory cortices,92�94,96�100,102,108 motor cortex,41 cerebellum110) has been studied.

• Most researchers analyzed intact circuitry in vivo, ex vivo, or fixed.
• Nearly all studies focused on excitatory synapses convergent on pyramidal neurons

with large dendritic fields.
• Coactive synapses were identified by electrical or optical recordings of spontaneous

activity, activity evoked by sensory presentation, or by artificial stimulation. Their
dendritic locations were apparent from imaging fields with wide coverage of the
postsynaptic neuron.

• Most, not all, studies found a correlation between co-activity and dendritic location.
Specifically, coactive synapses were more likely to occur within ,20 μm of one another,
with most results indicating ,10 μm and several identifying immediate neighbors as
part of the cluster. This empirically determined spatial window is somewhat smaller
than predicted by computational modeling.
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• Activity-dependent cluster formation has been observed in several systems.98,112�116

Experience-driven changes in clustering have been observed using naturalistic learning
paradigms in owl105,107 and rodents,41,108�110 and in both juvenile and adult animals.

• Clusters are not composed exclusively of coactive synapses but are often interdigitated
with other input cohorts. As a purely random distribution of afferent cohorts is
expected to produce some clusters by chance, convincing demonstration of true
clustering requires data sets with near saturating coverage and bootstrap analysis.

6 CELLULAR AND MOLECULAR MECHANISMS DRIVING
INPUT CLUSTER FORMATION

The formation of dendritic input clusters could result from the appearance of new coac-
tive neighboring synapses and/or from the elimination of neighboring inactive synapses.
Several studies, outlined below, have identified potential molecular and cellular
mechanisms.

Selective outgrowth and/or stabilization of new coactive neighboring synapses could be
accomplished through local cross talk, as reported by Harvey and colleagues in 2007. This
study demonstrated that activation of a single spine in a pattern that induces input-specific
LTP of synaptic structure and function113 also leads to the spread of a signal that converts a
subthreshold LTP stimulus into stable LTP at neighboring synapses. This cross talk between
synapses was due to an intracellular diffusible molecule that acts on a spatial scale of 10 μm
and a temporal scale of 10 min. Later studies identified Ras,117 Rac1, and RhoA as intracellu-
lar diffusible signals59 that support cross talk and thus selective strengthening of nearby syn-
apses. Such a cross talk mechanism could be responsible for the selective outgrowth of new
spines nearby active spines observed in 2008 by De Roo and colleagues.112

Alternatively, selective outgrowth and/or stabilization could be accomplished through a
synaptic tagging and capture mechanism, as reported by Govindarajan and colleagues in
2011.118 In this model, a stimulus that drives synaptic strengthening at strongly activated
synapses also leads to the protein synthesis-dependent production of PrPs (plasticity-related
protein products), which are captured at neighboring weakly activated, tagged synapses. If
successful in capturing PrPs, the weak, tagged synapse will undergo long-lasting late LTP.
This mechanism is similar to cross talk; however, it operates at a more global spatial scale of
70 μm (vs 10 μm) and temporal scale of 90 min (vs 10 min). Furthermore, synaptic tagging
and capture requires protein synthesis, whereas cross talk does not.

Finally, selective outgrowth and/or stabilization could occur through location-
dependent plasticity mechanisms that rely upon local dendritic excitability and integrative
properties.116 Specifically, Weber and colleagues report a proximodistally increasing gradi-
ent of nonlinear NMDA receptor-mediated amplification of spine Ca21 signals; the
enhanced synaptic cooperativity at distal dendritic compartments could promote the for-
mation of input clusters on distal dendrites.

In addition to selective outgrowth and/or stabilization, formation of dendritic input
clusters could also occur via the selective weakening and/or elimination of nearby inactive
inputs. One such mechanism was reported by Oh and colleagues at synapses of hippocam-
pal pyramidal neurons in slice culture.115 In that study, the authors observed that robust
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stimulation, leading to the growth and strengthening of several inputs on a single den-
drite, also led to the selective weakening of nearby (,3.5 μm) inactive synapses.
Heterosynaptic shrinkage of inactive spines required activation of calcineurin, metabotro-
pic glutamate receptors, and IP3 receptors,115 yet the specific mechanism has not yet been
determined. A recent report identified activity-induced competition for beta-catenin as
critical for mediating interspine competition during heterosynaptic spine pruning.119

An alternative mechanism for weakening of nearby inactive inputs was reported by
Winnubst et al. The authors used whole-cell patch clamp to monitor naturally occurring
changes in spontaneous activity at individual synapses in L2/3 neurons in the mouse visual
cortex in vivo and in hippocampal pyramidal neurons in slice culture.120 They found that
synapses that exhibit low synchronicity with neighbors (,12 μm) become depressed in their
transmission frequency, but not in their amplitude, suggesting a retrograde signaling mech-
anism that influences on presynaptic function. Experimentally increasing local synchronicity
stabilized synaptic transmission. Signaling through the high-affinity pro-BDNF receptor
p75NTR was required for depression of asynchronously stimulated synapses.120

Finally, the formation of dendritic input clusters could rely upon the coordinated local
plasticity of both excitatory and inhibitory inputs, as observed by Chen and colleagues.114

Using Teal-Gephyrin as a marker for inhibitory synapses, Chen et al. were able to simulta-
neously image putative inhibitory synapses and putative excitatory synapses (dendritic
spines) in the visual cortex in vivo. They found that inhibitory synapse and dendritic spine
remodeling were spatially clustered, suggesting local coordination of inhibitory and excit-
atory synaptic rearrangements.114 Such coordinated rearrangements could play an impor-
tant role in the establishment of coactive clustered inputs on dendrites.

7 FUTURE EXPERIMENTAL STUDIES

Below we outline four potential areas for future work. The first describes a stringent
experiment (currently just outside the realm of feasibility) regarding the functional signifi-
cance of input clustering. The second poses a new question—how microstructural dynam-
ics drive cluster formation. The final two topics are more open-ended.

7.1 What Is the Functional Significance of Clustering?

The empirical studies summarized earlier derive from an impressive arsenal of technol-
ogies. They provide compelling support for the existence of clusters and for the capacity
of dendrites to act as supralinear integrators in certain circumstances. Yet direct demon-
stration of whether naturally occurring input patterns drive supralinear summation
through clustered inputs is lacking, primarily because the natural input patterns are
unknown. Testing the model with natural patterns as opposed to the artificial patterns
used in previous studies would be an important advance because postsynaptic
integration—known to depend on timing, number, and strengths of inputs—could differ
markedly across input regimes. Moreover, naturalistic inputs could cause state changes121
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in the neuron via longer lasting biochemical modifications.117 We propose an experiment
with three components (Fig. 14.2).

The first is to determine the spatiotemporal patterns of synaptic input onto the entire
dendritic tree of a neuron in vivo. This is not a small task. The challenge lies in visualizing
the activations of thousands of afferent synapses because a diverse array of naturalistic
sensory stimuli is delivered to an awake animal. Simultaneous optical recording of each
synapse is theoretically feasible, and recent unpublished reports suggest that current plat-
forms have achieved the goal of complete dendritic input coverage for some cell types, yet
confidence is low that all synaptic events are reliably detected. Meeting this challenge
likely depends on the development of higher sensitivity calcium or voltage-based dyes
and further tools for high-speed multiphoton imaging, explicit goals of the BRAIN
Initiative. Failing complete neuronal coverage, mapping the input pattern to an entire den-
drite should suffice, as current evidence supports the dendritic branch as an independent
computational subunit.

The second is to measure EPSPs evoked both by each individual synapse and by the
naturally occurring input patterns. This could be achieved using multisport photoactiva-
tion and electrical or optical recordings, first to quantify (or estimate) the magnitude of

Map natural
input patterns

Map unitary
EPSPs

Scramble
clusters

Pattern 1, 2, … n unitary
syn=1

7

∑ ≤ patterned patterned ≥ scrambled

FIGURE 14.2 Hypothetical experiment. (A) Map natural input patterns in vivo. This could be accomplished
via two-photon imaging of calcium transients evoked by natural sensory stimuli. One challenge is developing an
imaging system with single synapse resolution and total neuronal coverage (thousands of synapses). Each stimu-
lus would be expected to evoke a different pattern of activation, illustrated for one stimulus by solid fill in 7 of 20
synapses. For each pattern, the spatial organization of synchronous versus asynchronous synapses could be ana-
lyzed using bootstrap methods to determine deviations from a random pattern. The model predicts different
input clusters uniquely associated with different stimuli. (B) Map unitary EPSPs. Whole-cell recordings could be
made from the same neuron. Glutamate uncaging could be used to measure EPSPs evoked by individual synap-
ses (arrows). Input clustering predicts that patterned activation would produce a stronger response than the sum
of unitary activations. (C) Scramble clusters. Multispot photoactivation could be used to simultaneously activate a
spatially randomized cohort of synapses (radial fill), matching the patterned cohort in its sum of unitary EPSPs.
Scrambled activation is predicted to produce a weaker response than patterned activation.
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EPSPs resulting from activation of each synapse and second to recapitulate the natural
input patterns. Retrospective analysis would determine whether native input clusters are
sufficient to drive supralinear summation and also should reveal motifs that most effec-
tively drive the neuron. With a diverse array of naturalistic patterns, one might also be
able to estimate the neurons capacity for pattern recognition and/or storage.

The third is to manipulate the multispot pattern in artificial ways that probe the necessity
of clusters. The number, strength, and relative timing of synapses within the effective natu-
ralistic cohort would be preserved but the spatial structure degraded. This would disambig-
uate the roles of the three parameters that govern function of the synaptic network—
location, weight, and integration rules—and provide important new data for computational
modeling. Close agreement of the model output and experimental results would provide
strong proof of input hypothesis and elevate the hypothesis to paradigm status.

7.2 How Do Clusters Form?

Spine motility is a necessary substrate for cluster formation but in itself does not explain
structured dendritic addressing. One possibility is that spines extend randomly into the
milieu of their potential inputs and form “tester” synapses with each axon they touch.
Those synapses that, by chance, are positioned within an effective cohort receive a reward
or consolidation signal, and the synapses would be stabilized. Spines that have formed in
the vicinity of asynchronously active synapses would destabilize and be eliminated coinci-
dent with spine retraction. This is a straightforward Hebbian model.

The alternative is a “Directed model” in which only coactive dendrites are recruited by
an axon.122 This could be achieved by the release of diffusible factors that guide spine out-
growth in the direction of the axons or by cell surface expression of receptors that signal a
match. Activity-based rules would still be needed to confirm specificity and fine-tune the
synaptic weight. This Directed model might be expected to rely on fewer tester synapses
and thus produce more efficient or faster remodeling. However, it would require a panel
of molecular tags (diffusible or cell surface), each encoding a separate activity pattern, to
provide target specificity within the milieu and therefore is mechanistically more complex.
Occam’s razor favors the Hebbian model.

Still, if directed outgrowth were found, the translational significance would be high.
Before a search for molecular tags is launched, a simple experiment would be to systemati-
cally manipulate the correlative activity between a postsynaptic dendrite and its neighbor-
ing axons while monitoring spine dynamics over an extended time period. Is spine
outgrowth geometrically random or targeted to processes with registered activity?

7.3 Does Clustering Occur at Higher Levels in the Network?

Lost in the discussion about whether the dendritic branch or neuronal cell body is the
fundamental computational subunit is the notion of recurrent structure across scales. This
chapter has focused on dendritic input clustering as a mechanism to boost neuronal stor-
age capacity. One open question is whether clustering is an organizing principle at the
level of neurons, circuits, and systems.123 Recordings using high-density multielectrode
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arrays (MEAs) have shown that a subset of neurons in mouse somatosensory cortex trans-
fer and receive far more information than others.124 These “hub neurons” may route as
much as 70% or cortical traffic despite representing just 20% of all neurons. A separate the-
oretical study indicates that neuronal hubs could have an outsized effect on network pro-
cessing, in particular in orchestrating state changes.125 Analogous results at the level of
macroscale connectomics, based on diffusion tensor imaging tractography with a resolu-
tion limited to voxels containing millions of circuit elements, have shown the brain to be a
small-world network with hub regions that make and receive significantly more connec-
tions than others.126 It would be interesting to compare the organization of these nonran-
dom features that appear at markedly different spatial scales

7.4 Did Clustering Evolve in Circuits With Higher Demands for Adaptive
Pattern Recognition?

The experiments and models described in this chapter provide good (not conclusive)
support of the input clustering model—at least in certain cell types and conditions.
However, global integration is hardly ruled out. One could speculate that both have a role
in microscale operation.

Few circuits may require the extra capacity afforded by clustering to achieve their pur-
pose. Moreover, many are best left consolidated as they were at the tail end of develop-
ment. Absent injury, degeneration, or neurogenesis, both the information, input and
computed output of these types of circuits, is stationary over the adult lifetime. Building
in a seldom-needed capacity for structural plasticity may simply not be worth the meta-
bolic cost. Thus, a comparative analysis of input clustering in circuits that evolved for
adaptive pattern recognition would be informative.

This search should not be regarded as a one-way trip through the phylogenetic tree
nor up the neuroaxis from spinal cord to cortex. For example, primary visual cortex in
mammals—whose capacity for invariant feature detection provides a reliable substrate
from which association cortex extracts complex percepts—may be less in need of adaptive
pattern recognition than, for example, the inferior colliculus in barn owls, whose role is
lifelong adaptation to slight changes in registration of auditory and visual cues necessary
for survival. Consistent with this notion, computational estimates of dendritic input dis-
crimination capability (M) across morphologically defined cell types found in fish, insects,
amphibians, birds, and mammals revealed large neuron-to-neuron variability127 that did
not correlate with evolutionary complexity. Predicting which circuits employ input cluster-
ing demands careful evaluation of each input�output transformation and whether it is
stationary over long timescales.

8 FUTURE MODELING STUDIES

As experimental studies move forward to test the sufficiency and necessity of struc-
tured dendritic addressing in a variety of circuits—a journey that in our view is more
likely to reveal a mixed bag of processing strategies than a canonical one—we consider the
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implications of distributed versus clustered processing for two “big science” projects at
the intersection of neuroscience and computer science: neurorealistic simulation and neu-
romorphic computing.

8.1 Neurorealistic Simulation

Quantitative models are ultimately required to demonstrate understanding of complex
systems such as Earth’s climate or mammalian brains. Simulating in silico the biophysical
operation of the human brain at the level of individual molecules is infeasible and unnec-
essary. The question is what level of biophysical detail is required to produce a reasonable
emulation of even one semiautonomous neural circuit such as a cortical column. There are
at least three schools of thought.

The structural connectome approach uses networks built of B103�106 s of anatomically
and biophysically realistic neurons represented by compartmental models or computation-
ally simplified two-stage processors. There are two distinct strategies based on predicted
connectivity128�136 or actual connectivity. One example of the former is the Human Brain
Project co-funded by the European Union. To simulate a microcircuit in rat somatosensory
cortex, a near complete catalog of resident cell types was assembled from morphological
and electrophysiological data gathered from hundreds of independent experiments. The
neurons (B31,000) were superimposed digitally according to laminar landmarks, and con-
nectivity was calculated from axodendritic overlap.137 The number of synapses (B37 mil-
lion) was scaled to match data, and synaptic weights were assigned. Remarkably, this
network built of predicted connectivity, as opposed to actual microscale wiring, was able
to reproduce an array of functional data including some in vivo features, all without
parameter tuning.138 Such a result is consistent with the distributed model of neural
processing.

The general applicability of this strategy, which does not incorporate empirically deter-
mined dendritic addresses, is not clear. Many higher order aspects of cortical function,
including capacity for learning and memory, have yet to be explored. Indeed, the value of
input clustering is maximal when networks are pushed to perform sophisticated pattern
recognition and adaptive processing. In this second school of thought, achieving high per-
formance from a neurorealistic simulation will depend on incorporation of actual connectiv-
ity. Ultimately this may require dense reconstruction of a serial EM volume coregistered
with prospective functional mapping.139 Several such projects are underway but will likely
take years to decades to complete.

In the interim, neurorealistic models could be infused with plasticity rules that produce
biologically observed connection motifs such as input clusters, sparse connectivity, and
other nonrandom features. Toward this goal, an abstract neural network (i.e., not neuror-
ealistic) was constructed to solve a hidden variable estimation task,140 a type of inference
that occurs in the brain. Robust computations were achieved only when both synaptic
weights and connectivity were left as adjustable parameters. This result was more striking
for sparsely connected networks—of which the brain is one example—than densely con-
nected ones. The network was also trained to mimic a motor learning task under condi-
tions where wiring plasticity was delimited by empirical measurements of the rates and
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scope of spine dynamics. Collectively, these theoretical results support the notion that sim-
ulation of microstructural dynamics may be essential for maximizing the performance of
neurorealistic models.

In a third school of thought, the functional connectome approach dispenses with the notion
of simulating synaptic signaling and neuronal integration and instead focuses on the real-
time activity pattern at millions of neuronal cell bodies.141 The raw data that would feed
such a model is expected to come from advances in high-throughput recording technol-
ogy, either electrical or optical.142,143 With days to weeks of recording naturally driven pat-
terns of activity with single neuron and single action potential resolution and circuit-wide
coverage, the algorithms performed by canonical circuits might be elucidated. One emerg-
ing example of this approach is neural control of prosthetic limbs144 via real-time analysis
of MEA signals implanted in motor cortex of primates.145 With enhanced coverage and
resolution, one could imagine the ability to “readout” of increasingly sophisticated cogni-
tive processes146 and eventually to piece together holistic emulation of natural behavior.

8.2 Neuromorphic Computing

One other potential application of understanding distributed versus clustered proces-
sing is to the field of neuromorphic computing. For more than 80 years, computer cores
have employed Von Neumann type architecture in which the sites of processing and
memory storage are physically separate. The simple existence of the digital revolution
indicates the power of this platform. Yet the design is quite unlike the brain in which the
sites of processing and storage are colocated at synapses. Neuromorphic chips, in contrast,
loosely mimic real synaptic networks. Prototype designs developed by academic groups at
MIT, Stanford, and Zhejiang University (China), and commercial efforts at IBM (True
North), Qualcomm (Zeroth NPU), Numenta (NuPIC), and Knowm (memristors) already
demonstrate one advantage of such an approach—radically lower power consumption
compared with standard processors.147 This feature alone promises enormous practical
advantages for mobile computing and remote sensing applications.

Yet another feature of neuromorphic architecture holds added potential. Recent
advances in “deep learning” have produced computer algorithms that, for the first time in
history, rival or exceed human performance in complex visual tasks such as object or face
recognition.148 Running these biologically inspired algorithms on Von Neumann architec-
ture, however, is viewed as inefficient. It is believed that embedding deep learning algo-
rithms in neuromorphic chips could maximize the utility of using synaptic networks. The
most futuristic musings on this topic predict a full 80 billion neuron simulation by 2025
and human-like artificial intelligence on the near horizon.

Putting aside fantastic claims, unraveling the brain’s microscale structure could con-
cretely inform the next generation of neuromorphic designs. This is because current
designs are based on a preconnectomics era understanding of synaptic networks and
therefore do not implement microscale connection motifs. As neuroscience continues to
discover motifs at an accelerating pace—and demonstrate their role in diverse information
processing and storage functions—it could provide a deep well of biological inspiration
for hardware engineers.
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